# Final Assessment 

MTH 403, Semester 1, 2021-22
Duration: 120 minutes

## Directions

- While writing solutions, please ensure that you sufficiently explain and justify all intermediate arguments leading to any conclusions that you may draw along the way.
- Each statement (or argument) in your solution must be clearly explained, and must be devoid of any logical fallacies or gaps.
- The fifth question is a bonus question which carries an additional 10 points. You are advised to attempt this question only after you have tried solving all remaining questions.


## Questions

1. Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be functions of class $C^{1}$. If $c=\left(x_{0}, y_{0}, z_{0}\right)$ satisfies both equations $f(x, y, z)=0$ and $g(x, y, z)=0$, and $\frac{\partial(f, g)}{\partial(x, y, z)}$ is of rank 2 at $c$, then show that one can solve for $x$ and $y$ in terms of $z$ near $c$.
2. Let $A \subset \mathbb{R}^{n}$ be open; let $f: A \rightarrow \mathbb{R}$ be of class $C^{2}$. For a rectangle $Q \subset A$ show that

$$
\int_{Q} D_{2} D_{1} f=\int_{Q} D_{1} D_{2} f
$$

3. A tensor $T \in \mathscr{T}^{k}(V)$ is said to symmetric if

$$
T\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

for each $\sigma \in S_{k}$. Let $\mathscr{T}_{\text {sym }}^{k}(V) \subset \mathscr{T}^{k}(V)$ be the subspace of all symmetric $k$ tensors. Consider the linear map Alt: $\mathscr{T}^{k}(V) \rightarrow \mathscr{T}^{k}(V)$.
(a) Show that $\operatorname{ker}(A l t)=\mathscr{T}_{\text {sym }}^{k}(V)$.
(b) Compute $\operatorname{dim}\left(\mathscr{T}_{\text {sym }}^{k}(V)\right)$.
4. Let $\omega \neq 0$ be a $k$-form on an open set $A \subset \mathbb{R}^{n}$.
(a) Show that there exists a $k$-chain $c$ such that $\int_{c} \omega \neq 0$.
(b) Use $3(a)$ and the fact that $\partial^{2}=0$ to show that $d^{2}=0$.
5. (Bonus) Let $D \subset \mathbb{R}^{2}$ be an open disk. Two paths $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow D$ with the same initial and end points are said to be homotopic if there exists a continuous function $H:[0,1] \times[0,1] \rightarrow D$ such that $H(x, 0)=\gamma_{1}(x), H(x, 1)=\gamma_{2}(x)$, $H(0, t)=\gamma_{i}(0)$, and $H(1, t)=\gamma_{i}(1)$. If $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow D$ are homotopic paths, then show that for any closed 1 -form $\omega$ in $D$, we have

$$
\begin{equation*}
\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega \tag{10}
\end{equation*}
$$

